
flow interacts most intensively with the wall in the middle and is compacted in the bottom 
part of the unit. 

The calculations show that thermofluidization of a sorbent flow in a desorber improves 
heating uniformity and increases the degree of regeneration by 20-30% compared to regeneration 
in a dense flow [i, 3]. 

NOTATION 

T, temperature; a, degree of adsorption, kg/kg; E, porosity; p, density; D, mixing coef- 
ficient; G, zeolite flow rate in the unit; d, particle diameter; I, desorption rate; c, heat 
capacity; H, differential heat of adsorption (desorption); w, fluidization velocity; v, vis- 
cosity; p, pressure; Ar, Archimedes number; Q, heat flux. Indices: g, gas phase; d, solid 
phase; 0, limiting value; a, e, and T, for transport of sorbed and desorbed phases and energy 
(enthalpy), respectively; wa, wall; m, 7, medium and liquid phase; s, saturated state of sorb- 
ate. 
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EFFECTIVE TRANSPORT COEFFICIENTS OF TEXTURED MATERIALS 

E. A. Mityushov, P. V. Gel'd, R. A. Adamesku, 
and A. M. Brynskikh 

UDC 537.312:539.22 

A method is proposed for calculating effective transport coefficients of two-phase 
anisotropic polycrystalline materials with an arbitrary distribution of anisotropic 
ellipsoidal particles of the first phase. 

As is known, anisotropy of the kinetic properties of polycrystalline materials may be 
due to both crystallographic and mechanical texture. Methods of calculating the effective 
transport coefficients in such systems have been fairly well developed by now mainly only 
for isotropic objects [i]. However, anisotropic materials are most often encountered in prac- 
tice, which makes it necessary to develop methods to evaluate their effective properties. 

To solve this problem, first we examine the effect of crystallographic texture on charac- 
teristics of a single-phase polycrystalline material. We henceforth assume that there is 
perfect contact between the phase components (grains, inclusions), i.e., there are no inter- 
granular layers or foreign phases to complicate the description of transport processes. Due 
to the isotropy of the kinetic properties of polycrystals with a cubic lattice, we will take 
the symmetry of the structure below to be cubic. 

The simplest method of evaluating effective kinetic properties is to average the trans- 
port coefficients in individual crystallites for a set of orientations. This approach corres- 
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ponds to limiting models of the material, in which either parallel or serial connection of 
grains of different orientation is examined. 

In the special case of the passage of a direct current, this corresponds to determina- 
tion of conductivity (E = const) or resistivity (j = const), respectively [2]. If the proper- 
ties of the phase components of the given polycrystalline specimen are described by three 
principal values of the conductivity tensor (oj) and resistivity tensor (pj), then we have the 
following for their mean values: 

~i =: < ~ ) ~J and p~ = <a~  )py, ( 1 )  

w h e r e  ~ i J  a r e  t h e  c o s i n e s  o f  t h e  a n g l e s  b e t w e e n  t h e  p r i n c i p a l  s y m m e t r y  a x i s  o f  t h e  p o l y c r y s t a l  
Oxi and the principal symmetry axis of the crystallite Oxj' 

The evident deficiency of Eqs. (i) amounts to the fact that they lead to values of oi* 
and Pi* which do not satisfy the condition oi* = i/pi*. This is a natural consequence of 
the fact that the interaction between grains in the polycrystalline specimen was ignored in 
their derivation. This fact was considered in a correlation approximation made to describe 
kinetic properties in [3]. Here it was noted that the role of grain interaction depends on 
the anisotropy of the crystallites and the degree of texturing of the material. The interac- 
tion can be allowed for by another approach. As was shown in [4, 5], effective transport 
coefficients of a quasiisotropic polycrystal are not hard to establish from the condition 
of equality of the third invariants of the second-rank tensors which describe the correspond- 
ing characteristics of a polycrystal and single crystal [while Eq. (i) reflects :the equality 
only of the first invariants of these tensors]. Use of the averaging method in [4] for aniso- 
tropic materials leads to the relations 

2 2 2 2 2 2 
* 3 < * l<Cr i > 2<o~i2 > 0<o~i3 > (Yi ~ (Yl<C~il> 0" 2<c~i2> (I ~i3>, Pi ~ ~) ~) b~3 " 

With an equiprobable distribution of the crystallographic axes <~ij2> = 1/3, 
tion with which Eqs. (2) lead to the expressions 

3 - 3 f - -  
~ * =  ~ ~Vr~-~10%%, p* = VPlP2Pa, 

( 2 )  

in connec- 

derived earlier [4] for quasiisotropic polycrystals. 

If the crystallites have tetragonal, trigonal, or hexagonal systems (o~ = o2, Pl = P2), 
then we obtain the following from Eqs. (2) (with allowance for the condition of orthogonality 
satisfied by the direction cosines) 

2 2 
2 ~ 2 1 - - < ~ i 3  > o<~t3> 

* " -  < ~i3> ~i3 >and 9~ = 91 ~3 �9 ( 3 )  

It follows from Eqs. (3) that the effective characteristics of textured polycrystalline 
materials are determined by the spatial distribution of just one crystallographic axis. Here, 
the main values of the squares of the direction cosines <~is2>, taken into account in describ- 
ing the characteristics of the polycrystalline object, can be found by analyzing the features 
of just one pole figure. In particular, this pole figure is {0002} for CPU metals [6]. If 
the distribution of the crystallographic axis Ox 3' is assigned by means of the texture func- 
tion P(r 7) represented in the form of a series in spherical functions 

]=0 m~I - 

then the mean values <~i32> in Eqs. (3) can be expressed through the coefficients of the expan- 
sion by means of the relations: 

2 1 1 2 
< q-~3 > - 3 3 ~  a~o +-~- a22, 

< 2 1 1 2 ~ 1 1 
23 > - -  - -  a 2 0 - - - -  a22, < ~33 > = - - j - - - ~ - -  a2o- 

3 30 5 o 15 
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},5 

Fig. i. Region of possible textures in 
the coordinates aai-~a0 of the texture- 
function expansion. 

It should be noted that the effective transport coefficients in textured polycrystalline ob- 
jects with a mean symmetry class are determined by only two coefficients of the texture-func- 
tion expansion. The remaining terms of the expansion have no effect. As can be seen from 
the figure, the coefficients of the expansion can take the following values, depending on 
the type and degree of perfection of the texture: -5 ~ aao s i0 and -1.25 s aaa ~ 1.25. 

It is interesting to note that for single crystals having properties witha small degree 
of anisotropy, the expansion of Eqs. (3) into series in the small parameters [(oi/0"a) -- i] 
and [(Pl/P3) - i] and retention of only the linear terms lead to solutions corresponding to 
the simplest models of polycrystalline materials with parallel and serial Connection of the 
structural elements, respectively. In fact, 

* 0-1 1 -- < S / a >  0"1 ~ i = o "  a =o" a 1 @ - ( 1 - -  <~2a) )  - - - - 1  + . . .  ,~, 
Ga 

' ( I - <~3> = "~(0"3 ~ )<  2 * O~ 1 2 -- ia > +0"1, Pc= P3 \-'~'-a / 

-=93 1 + ( 1 - -  <cq3 >) 1 @-. . .  ~ (93- -9~)  < r162 > q-Or- 
D3 

It should also be noted that Eqs. (3) can be regarded as a generalization of the Licht- 
enecker formula [7] for calculating the conductivity of a mixture of two isotropic phases 
for one-phase macroscopically anisotropic materials. With allowance for this, the mean values 
<~i32> characterize the relative fractions of grains oriented with the crystallographic axis 
0x 3' in the principal direction of the polycrystal. 

Using Eqs. (2), it is not hard to describe the characteristics of two-dimensional poly- 
crystals. Assuming <~i32> = 0 in Eqs. (2), we find 

where i = 1, 2. 

With an e q u i p r o b a b l e  d i s t r i b u t i o n  o f  t h e  c r y s t a l l o g r a p h i c  axes  in  t h e  p i a n o  of  t h e  two-  
d i m e n s i o n a l  c r y s t a l  (<~i2z> = 1 / 2 ) ,  we have  e = / -o lo2 ,  p = g-P192. Th i s  r e s u l t  a g r e e s  w i t h  
t h e  e x a c t  s o l u t i o n  o b t a i n e d  in [ 8 ] .  

To e s t a b l i s h  t h e  e f f e c t  o f  m e c h a n i c a l  t e x t u r e  on t h e  p r o p e r t i e s  o f  a t w o - p h a s e  p o l y c r y s -  
t a l l i n e  o b j e c t ,  we w i l l  u se  a f a i r l y  g e n e r a l  model o f  t h e  m a t e r i a l .  The components  o f  one 
o f  t h e  phase s  a r e  e l l i p s o i d a l  a n i s o t r o p i c  i n c l u s i o n s  d i s t r i b u t e d  randomly  in  an i s o t r o p i c  
m a t r i x .  Such a model i s  c o n v e n i e n t  b e c a u s e  i t  p e r m i t s  c o n s i d e r a t i o n  o f  b o t h  m e c h a n i c a l  and 
c r y s t a l l o g r a p h i c  t e x t u r e .  We w i l l  s i m p l i f y  t h e  c a l c u l a t i o n s  by assuming  t h a t  t h e  p r i n c i p l e  
axes  o f  t h e  e l l i p s o i d a l  p a r t i c l e s  c o i n c i d e  w i t h  t h e i r  c r y s t a l l o g r a p h i c  axes .  This  a s s u m p t i o n  
i s  v a l i d ,  f o r  example ,  when t h e  i n c l u s i o n s  a r e  s h o r t  s i n g l e - c r y s t a l l i n e  f i b e r s .  Such f i b e r s  
a r e  o f t e n  used  as t h e  f i l l e r s  in  c o m p o s i t e  m a t e r i a l s  [ 9 ] .  

Following [I0], we will solve the problem in two stages. First we determine the proper- 
ties of heterophase systems with unidirectional inclusions in the form of an ellipsoid of 
revolution. We thereby determine the effective characteristics of a certain region of the 
material containing one particle with its associated fraction of matrix. We then use Eq. (3) 
to average the properties of an analogous pseudohexagonal polycrystal with allowance for the 
spatial distribution of the particles. 
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The use of such a sequence in the calculations makes it possible to significantly reduce 
the size of the error of the estimates, since we first smooth effects often caused by the 
quite different properties of the matrix and inclusions and then average the data over differ- 
ent orientations. 

We will use the method of effective media [i] to establish the characteristics of materi- 
als with a unidirectional system of inclusions. In this method, the effective properties 
are determined from a condition imposed on the field in a single inclusion by a property of 
the surrounding medium. Here we can either assume that the characteristics of the medium 
and the matrix in a two-phase material are equal or that the properties of the medium coin- 
cide with the effective properties (self-consistent model) [Ii]. The first approach will 
be used to describe the properties of matrix mixtures, while the second approach will be used 
for statistical mixtures of equal phases. 

Examining the passage of a direct current in an anisotropic two-phase medium, from the 
generalized Ohm's law 

< j ) = < ~ . E >  

we find 

o*. < E )  = o  (2). < E )  + < ( o - - o ( 2 ) ) . E > .  (4 )  

S i n c e  t h e  random v a r i a b l e  (o - 0 ( 2 ) )  in  t h e  s econd  t e r m  of  Eq. (4 )  i s  n o n t r i v i a l  o n l y  
a t  t h o s e  p o i n t s  o f  t h e  medium b e l o n g i n g  t o  componen t s  o f  t h e  f i r s t  p h a s e  w i t h  t h e  vo lume con -  
t e n t  c l ,  we h a v e  

o*. < E > = o (2) �9 ,< E > + c ~ ( o  ( ~ ) -  ~(2)) .E(~) .  ( 5 )  

Here E (I) is the mean value of the field strength in the region occupied by the first phase: 

E ( n _  1 [ Edv. 

The v a l u e  o f  t h e  mean f i e l d  s t r e n g t h  o v e r  t h e  e n t i r e  vo lume o c c u p i e d  by t h e  f i r s t  p h a s e  i s  
c o n n e c t e d  w i t h  t h e  mean v a l u e s  o v e r  t h e  vo lumes  o c c u p i e d  by t h e  c o r r e s p o n d i n g  i n d i v i d u a l  p h a s e  
componen t s  by t h e  r e l a t i o n  

< E ) = c , E ( ' ) +  (1 - - c , )  E (2). (6 )  

Us ing  t h e  w e l l - k n o w n  s o l u t i o n  o f  t h e  p r o b l e m  o f  p o l a r i z a t i o n  o f  an e l l i p s o i d a l  i n c l u s i o n  
in  a u n i f o r m  f i e l d  [12] ( w i t h  a l l o w a n c e  f o r  t h e  e q u i v a l e n c e  o f  t h e  m a t h e m a t i c a l  d e s c r i p t i o n  
o f  t h e  phenomena b e i n g  d i s c u s s e d )  and a s suming  t h a t  t h e  s t r e n g t h  o f  t h e  i n t e r n a l  f i e l d  i s  
e q u a l  t o  E ( 2 ) ,  we o b t a i n  

E (') = {I ~- n �9 [(o(e))-i . o(~) __I]}- , .E (2) " (7 )  

Here, n is a tensor accounting for the shape of the inclusions; I is a second-rank unit tensor. 
The quantity o (2) represents a component of the tensor 0 (2) (scalar quantity). 

The components of the tensor n written in the principal axes for an ellipsoid of revolu- 
tion with a = b < c have the form [12]: 

where the eccentricity 

1 (1--n3) ,  n 3 =  l - - e 2  (In l + e  2e] 
ni = n~= ~ -  2e 3 , 1 - - e  

P tl 2 
e= ~/ l---- 

C 2 " 

If the shape of the ellipsoid is close to a sphere (e << i), then we can approximately 
assume that 

1 1 1 2 
Y/ t  - - -  / ' / 2  ~ , ~ -  - -  e 2 ,  / 2  3 - -  - -  e 2 .  

3 15 3 15 
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In the presence of oblate ellipsoids in the polycrystal (b = a > c) 

where the eccentricity 

1 I @ e  ~ 
n, = n2=--7--  (1 --na),  n a -  (e arctge), 

2 e a 

e - .  c----7-~ - - 1  . 

In the given case, at e << i we have 

I e 2 1 _]_ 2 eL 
/2.1 : :  7"/2 - , 17 3 = - -  _ 

3 i5 3 15 

It should also be noted that in the special case of spherical inclusions n I = n 2 
1/3, while for cylindrical fibers with a generatrix parallel to the axis Ox 3' (c + ~) 

= n 3 = 

for a = b ' n , - - n = =  1/2, n a = 0 ,  

for a =/= b : n~ = 1/(~. -{- 1 ), n.~ = ~,t(5~ -]- 1), na = 0, 

where ~ = a/b is the ratio of the semiaxes of the elliptical base. 

Since a two-phase material with unidirectionaily oriented inclusions is characterized 
by two independent coefficients o~ and o~, to determine them it suffices to examine the passage 
of a current in two directions. In the case when it is perpendicular to the axis of orienta- 
tion of the fibers, it follows from Eq. (7) that 

E ~  1) = E~ 2) 

( ~I'} - -  1 n, 1 +  - ~  

From this relation and Eqs. (5) and (6) we find that 

%* = o ( 2 ) + [ ( t _ c O n ~ + c d ( ~ } ~  _~(~I) o (2~. 
0(2)@ (1 --ci)ni (a~ I)- o(2)) 

When the current passes along the orientation axis of the fibers, 

E [  ~ _= E~ 2~ 
(i) ) 

(~ra 1 na 
1 -F o<2-----T- - -  

Using this expression and Eq. (5), we find that 

, ~c2) 4- [(1-- cO na i-cd ( 4 ~ - - ~  (2~) o(2~ 
0-ii == 

o l-~ + (t - -q)n~ (~1~ __ ~ )  

Finally, considering the disorientation of particles of the disperse phase, in accord- 
ance with Eq. (3) we have 

<= (8) 

For the special case of an axial texture, by virtue of satisfaction of the equality 

it follows from Eq. (8) that 

2 
2 2 I - -  <~aa> 

< c<a > : :  < ~2a > = 2 . . . .  

2 2 
I @ < ~ 3 3  > 1 - -  < ~z33> 

2 2 0"~ .... O2 = -  O'j_ tT[l 

2 2 
* I - - <  o~33> <oc33>"  

, U3 ~.i 0 
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Similar relations are satisfied for other coefficients characterizing transport processes 
in heterogeneous systems with mechanical and crystallographic texture. It should also be 
noted that it is not hard to use Eq. (8) to obtain certain well-known particular solutions 
by changing the parameters of the texture of the material, the shape of the disperse particles, 
and their anisotropy. 

NOTATION 

E, vector of electrical field strength; j, vector of current density; oj and pj, princi- 
pal values of tensors of conductivity and resistivity, respectively; oi* and pi*, principal 
values of the effective tensors of conductivity and resistivity~ o and o*, tensors of the 
random and effective conductivity coefficients of the medium; o <2), tensor of conductivity 
of the isotropic matrix; E (i), mean value of field strength in the region occupied by the 
i-th phase (vector); vl, volume of the region occupied by the first phase; ~, conductivity 
coefficient with the passage of a current along the fiber orientation axis ~ ~ , conduc- 
tivity coefficient with the passage of a current perpendicular to the fiber orientation axis; 
Ei If), Ej(2), components of the vectors of the mean values of field strength in the regions 
occupied by the first and second phases; n, second-rank tensor accounting for the shape of 
the inclusions; I, second-rank unit tensor, a. b, c, semiaxes of the ellipse; e, eccentricity 
of the ellipse; ni, components of the tensor n; I, ratio of the semiaxes of the elliptical 
base; aij, direction cosines; Oxi, principal axes of symmetry of the polycrystal; Oxj', prin- 
cipal axes of symmetry of the crystallite; < >, averaging sign; P, texture function; ~, ~, 
angles; a20, a22, coefficients of the expansion of the texture function into a series in spher- 
ical functions; ci, volume content of the i-th phase. 
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